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Abstract. The geometric apparatus of Khan–Mitra (Adv. Math. Econ. 8:349–381,
2006; Jpn. Econ. Rev. 58:191–225, 2007) enables an identification of a tripartite
(inside-borderline-outside) distinction for discounted Ramseyian optimality in the
2-sector RSS model and to obtain the following results: (a) parametric ranges of
the discount factor for which the check-map is the optimal policy function, (b) nec-
essary and sufficient conditions for the existence of stable optimal 2-period cycles,
(c) absence of 3-period cycles in the borderline case, and (d) existence of unstable
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3-period cycles in a canonical instance of the outside case. The geometry is shown to
have more general interest and relevance for future work.
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McKenzie bifurcation, Optimal policy correspondence, RSS model, Trapezium,
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1. Introduction

In Khan–Mitra [8], the authors presented a comprehensive analysis of (undis-
counted) Ramsey optimality in a special case of a model due to Robinson,
Solow and Srinivasan, the so-called 2-sector RSS model, through the iden-
tification of a parameter ξ that was interpreted as the marginal rate of
transformation of capital from one period to the next with zero consumption.1

Such a parameter was not identified in earlier work,2 and by seeing it as
the slope of the so-called MV line in a today–tomorrow diagram familiar
to students of the general theory of intertemporal resource allocation, the
authors relied on a 1970 theorem of Brock’s to present a geometric apparatus
that revolved around this MV line.3 Two additional lines were identified: the
so-called OD line of slope (1 − d), d the rate of depreciation, designating
production plans in which the investment-goods sector is shut down; and a
V L line, again of slope (1 − d), designating production plans in which only

1 As an anonymous referee and the Editor emphasized, this introduction is not reader-
friendly, and assumes a familiarity with the basic geometry of the 2-sector RSS model
developed in [5, 8]. Rather than reproduce the analysis of the two papers here, we refer
the reader to the six-paragraph recapitulation of the geometry for the undiscounted
2-sector RSS case, originating in [8], in [5, Sect. 3]. Section 4 of the latter paper
also delineates how the basic constructions apply, essentially without change, to the
discounted case. This being said, in the subsequent section on the basic model, we
add some additional explanation to help the reader.
2 The earlier work that we have in mind concerns the version of the RSS model in
continuous time; see Siglitz [14, 15], Cass–Stiglitz [1], and references to the work of
Okishio and Joan Robinson. The discrete-time version, as is being anlyzed here, was
first presented in [3].
3 The MV line is the concrete manifestation in the 2-sector RSS model of the concept
of a von-Neumann facet, familiar to readers of Lionel McKenzie: the locus of input–
output plans that have zero-value loss relative to the golden-rule stock and at the
golden-rule prices. As detailed in Footnotes 6 and 14 below, and in the references in
Footnote 1 above, this line is also a full-employment no excess-capacity line, and a
benchmark-line on which all the indifference curves are pegged. As such it has a triple
identity.
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Fig. 1 Basic geometrical benchmarks of the 2-Sector RSS model: the case ξ(1−d) = 1
or a = ξ/(1 + ξ2) or (1/a) = (1 − d) + (1 − d)−1

this investment-goods sector is operative.4 This apparatus was used in the
familiar cobweb setting to identify the optimal policy correspondence. Such a
correspondence reduces to a function, the so-called pan-map, in the case ξ >

1, and guarantees convergence to the golden-rule stock in a finite number of

4 The reader is referred to Fig. 1 for all the geometrical references in this introduction.
For orientation, and in the light of Footnote 2 above, the reader should note that the
square M1M2M3M4 in Fig. 1 corresponds to the square M1QMP in [8, Fig. 13] and
to the square M1M2M3M4 in [5, Fig. 5], and to the dotted squares with vertex M1 in
[5, Figs. 4 and 8]. Also see the second and third paragraphs of Sect. 2 below.
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periods, though for capital-poor economies, in a precisely-delineated sense,
the convergence is not monotonic. In the case ξ < 1, the correspondence is
again a function, the so-called check-map, which again guarantees conver-
gence: monotonic for the subcase −1 < ξ ≤ 0, but constituted by damped
oscillations for the subcase 0 < ξ < 1. It is only in the remaining case
when ξ = 1 that Ramsey-optimality yields indeterminacy and a policy corre-
spondence that includes not only the pan- and check-maps but also a triangle
they enclose between them, henceforth the pan-check correspondence. This
result is the only one known to us in the literature on optimal growth theory
where a program making higher value-losses than another may nevertheless
be optimal. A theory of undiscounted dynamic programming is formulated in
Khan–Mitra [6] to provide an analytical demonstration of these results.5

In Khan–Mitra [5], this geometric apparatus is extended to the discounted
case. It is shown that it is only the case ξ > 1 that proves recalcitrant to anal-
ysis. For −1 < ξ < 1, the transition dynamics are identical between the
discounted and undiscounted cases, and for the particular value of ξ = 1, it
is only the indeterminacy exhibited in the optimal policy correspondence that
is now eliminated by an operative transversality condition. This is simply to
say that the check-map is the optimal policy function for all values of the
discount factor, including the value ρ = 1. However, for ξ = (1/(1 − d)), a
particular instance within the sub-case ξ > 1 that translates into a mutual per-
pendicularity of the MV and OD lines, it was shown that for all ρ > (1/ξ),
the optimal policy function is precisely the pan-map as in the undiscounted
case, and that for all ρ < (1/ξ), the optimal policy function is precisely the
check-map, with the indeterminacy reappearing in the shape of the pan-check
correspondence for ρ = (1/ξ). Furthermore, the check-map isolates a non-
negligible continuum of initial capital stocks that generate 4-period cycles.
Satisfying as these results are as a vindication of a Fisherian equilibrium,
they deal only with the one point within the parametric range; in short, a
single instance of the model. In a subsequent, non-geometric and analytic
substantiation of the role played by 1/ξ through the theory of discounted dy-
namic programming was presented in Khan–Mitra [9] and referred to as a
“folk-theorem” revolving around the McKenzie bifurcation.

However, in this charting of discounted optimal growth in the two-sector
RSS model, another set of results pertaining to optimal topological chaos
deserves mention. In Khan–Mitra [4], the result that the optimal policy
correspondence is a continuous function for all ρ < 1/(ξ + (1 − d)) ≡ a,6

5 It is perhaps worth pointing out that this analytical demonstration concerns the case
ξ �= 1; for the non-generic case of ξ = 1, the authors rely on a synthesis of value-loss
methods going back to Radner [13], and built on by Brock.
6 As we shall see below, the parameter ξ is defined by ((1/a) − (1 − d)), where a is
the amount of labor required to make a single machine. Hence a = (1/(ξ + (1−d))).
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is used to show the existence of optimal topologically-chaotic trajectories in
the particular instance (ξ − (1/ξ))(1 − d) = 1. This finding appeals to re-
sults on turbulence. Furthermore, as a byproduct of a construction presented
in Khan–Mitra [7], a similar finding of the existence of optimal (topologi-
cally) chaotic trajectories in the particular instance ξ = (1 + (1/(1 − d)))

is established as a direct consequence of the Li–Yorke theorem. On relying
on analytical results of [4],7 a simple and unified geometric argument can be
presented for both instances. The underlying methodological premise behind
this work is worthy of emphasis: it is simply that other than continuity, the
shape of the optimal policy correspondence can remain completely unknown.
However, this raises the natural question as what the optimal policy function
really is at least in these two cases.8

We answer this question here through a geometric analysis that proceeds
beyond earlier work in several important directions. The first point to be em-
phasized is that the sustained application of the geometric apparatus to these
two cases reveals a categorization totally missed in earlier work. It allows us
to perceive the instance of the model studied in [4] as a borderline case, sepa-
rating an inside case from an outside one. In particular, it isolates a trapezium
as a kernel of interest in the 2-sector RSS geometry for the case ξ > 1,
the upper triangle of this trapezium being precisely the triangle of the pan-
check correspondence referred to above. In Fig. 1, this trapezium is given by
GMM4G1. The vertices of this trapezium are worthy of notice: in addition
to the kink M of the check-map, they are the golden-rule stock indicated by
G, and the capital stock represented by G1 from which a shutting down of
the investment-goods sector leads to the golden-rule stock in the subsequent
period. Figure 2 represents two cases depending on whether the point M5
falls strictly inside or outside the interval GG1. Parameters of the model that
give rise to the two possibilities will be respectively referred to as exhibit-
ing the inside case, or the outside case. The case where G1 equals M5 will
be referred to as the borderline case.9 As the alert reader will undoubtedly
note, Fig. 2 is simply a visual representation of the analytical comparison of
the two angles tan−1(1 − d) and tan−1(1/ξ), these being none other than the
respective slopes of the OD and the dual MV lines.

7 From here on, having mentioned the relevant earlier work of the authors by name,
we adopt the convention of referring to an item by its number in the list of references.
8 This work has now received extension and elaboration in [10]. The construction,
originally presented in [7] is incorporated in ongoing work by Khan and Adriana
Piazza.
9 For a further orientation, and as an exercise, the reader may wish to look ahead at
Figs. 7 and 8, along with Fig. 1, and determine for herself where they fall within the
tri-partite categorization being proposed in this paragraph.
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This tri-partite categorization can also be presented solely in the ver-
nacular of the dynamics of the check-map. Under the parametric case (ξ −
(1/ξ)) = 1/(1 − d), referred to above and discussed in [4], the check-map
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is one under which the unit capital stock converges to the modified golden-
rule stock precisely after two periods by virtue of the fact that the capital
stock in the second period is represented by the point M5 = G1, which is to
say that M5 lies precise on the endpoint (border) of the interval GG1. The
two instances of the model considered in [5], and discussed above under the
parametrizations ξ = 1 and ξ = (1/(1 − d)), can both be seen as inside
cases. In each instance, M5 lies inside the interval GG1. Finally, under the
parametrization ξ = (1 + (1/(1 − d))), M5 lies outside the interval GG1,
and it is thereby revealed to be an outside case.10

Furthermore, as we emphasize below, it is the fact that this trapezium is
an isosceles trapezium in the case ξ(1 − d) = 1, the case considered earlier
in [5], that is responsible for the particular symmetry of this case. Indeed, the
essential contribution of the analysis of this case presented earlier hinged on
the identification of a line dual to the MV line: the GV ′ line in Fig. 1. The
two lines are dual in the specific sense that the sum of their slopes constitute
a right angle. It was argued that this dual MV line serves as important a role
in the theory of the 2-sector RSS model as the MV line itself: whereas the
intersection of the MV line and the 45◦-line yields the golden-rule stock (and
also the modified golden-rule stock in the discounted case), the intersection
of the dual MV line and the OD line yields an optimal 2-period cycle for all
the discount factors for which the check-map is the optimal policy function.11

This dual MV line was seen to isolate a square of analytical relevance, and
what we now see, and establish in the sequel, is that the both the number of
bifurcations and the transition dynamics hinge crucially on how the trapezium
GMM4G1 relates to the square M1M2M3M4.

With this borderline-inside–outside distinction at hand, we can turn to the
question posed above as regards the optimal policy correspondence for the
two instances of the 2-sector RSS model. The analysis of the first case mim-
ics that obtained in [5] in that we again obtain the pan- and check maps and
the pan-check correspondence for the identified values of the discount fac-
tor. The second case, however, yields a surprise. There are now two instances
of indeterminacy, two points of bifurcations of the discount factor. For the
case ρ = (1/ξ), the optimal policy correspondence consists of two pan-maps
and a trapezium that they enclose; and for the case ρ = ρc < (1/ξ), ρc to
be delineated below, the optimal policy correspondence consists of a second

10 In keeping with Footnote 9, the parametrization herein discussed first is presented
in Fig. 7, the second in Fig. 1, and the third in Fig. 8. For the parametrization, ξ = 1,
will have to draw the associated figure herself or go to figure in [5, Fig. 8].
11 And possibly, in some cases, for higher values of the discount factor. Since this
possibility does not arise in the two cases on which we focus in this paper, we leave
its analysis for the future.
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pan-map, the check-map and a corresponding triangle that they enclose. This
instance, and its analysis, is important in that it disposes of the conjecture that
there is only one McKenzie bifurcation of the discount factor for the 2-sector
RSS model and thereby reveals its unexpected richness. Furthermore, we can
go beyond these two instances of the 2-sector RSS model, and proceeding
within the inside case, establish the existence of a unique McKenzie bifurca-
tion for the parametrization 1 < ξ < (1/(1 − d)).

Once the check-map is identified as an optimal policy function for
specific ranges of the discount factor, we can turn to the resulting optimal
dynamics. This constitutes the third direction in which the analysis of this
paper goes beyond results reported in earlier work. We furnish for all dis-
count factors in the range ρ < (1/ξ), necessary and sufficient conditions for
the existence of an optimal attracting 2-period cycle in the 2-sector RSS
model. We can show that there exists a capital stock x̃ greater than unity
to which all optimal programs converge. In the light of the authors’ earlier
work on optimal chaos referred to earlier, this result therefore establishes
the impossibility of such chaotic dynamics for the parametric range under
consideration.12 As far as the two (primary) parametric instances considered
in this paper, even though we are still several steps away from a complete
analysis of the dynamics of the check-map, we can identify another impor-
tant ingredient of our geometric apparatus: a line OD2 with slope (1 − d)2

“below” the OD line with slope (1 − d).13 Such a line can be used to diag-
nose the presence of a 3-period cycle, and it enables us to offer two results:
(a) the absence of a 3-period cycle in the borderline case, (b) the instability
of the 3-period cycle in the outside case.

The remainder of the paper is as follows. After a specification of the
model and the geometric antecedents in Sect. 2, we present the substantive
analysis in Sects. 3–5, one section for each parametrization, and with each
sub-sectioned into a discussion of the benchmarks, the dynamics and the bi-
furcations. The third identifies non-degenerate ranges of the discount factor
under which the check- and pan-maps are the optimal policy functions, as
well as the resulting transition dynamics in these cases. Section 6 ends the
paper with some observations oriented to for future work needed for a com-
plete characterization of the optimal policy correspondence in the general
setting, and a complete delineation of the optimal dynamics corresponding
to it.

12 For the importance of 2-period cycles in the theory of optimal growth, see Mitra
[12]. Also see [2] for the pervasiveness of cyclical behavior in the Leontief-Shinkai
model.
13 It is the squared term that leads us to name this the OD2-line; to refer to the OD

line as the OD1-line would surely be excessive pedantry.
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2. The Model and Its Geometrical Antecedents

In this section we present the two-sector model, and recall the basic features
of the geometrical apparatus presented in Khan–Mitra [5, 8].

A single consumption good is produced by infinitely divisible labor and
machines with the further Leontief specification that a unit of labor and a
unit of a machine produce a unit of the consumption good. In the investment-
goods sector, only labor is required to produce machines, with a > 0 units of
labor producing a single machine. Machines depreciate at the rate 0 < d < 1.
A constant amount of labor, normalized to unity, is available in each time
period t ∈ N, where N is the set of non-negative integers serving as the
time periods. Thus, the transition possibility set, �, formalizing the collection
of feasible production plans (x, x ′), the amount x ′ of machines in the next
period (tomorrow) from the amount x available in the current period (today),
is given by

� = {(x, x ′) ∈ R2+ : x ′ − (1 − d)x ≥ 0 and a(x ′ − (1 − d)x) ≤ 1},
where R+ is the set of non-negative real numbers, z ≡ (x ′ − (1 − d)x) the
number of machines produced in period t , and z ≥ 0 and az ≤ 1 respectively
formalize constraints on reversibility of investment and on the use of labor.
The set �, as constituted by these two constraints, is portrayed as the “open”
rectangle LV OD in Fig. 1.

The preferences of the planner are represented by a linear felicity func-
tion, normalized so that its value is identical to the amount of the consump-
tion good. If, for any (x, x ′) ∈ �, y represents the amount of machines
available for the production of the consumption good, given the normaliza-
tions adhered to, it also represents the amount of the consumption good that
is available. Given the pair (x, x ′) ∈ �, the stock of machines devoted to the
consumption goods sector is given by the correspondence

�(x, x ′) = {y ∈ R+ : 0 ≤ y ≤ x and y ≤ 1 − a(x ′ − (1 − d)x)}.
Hence the reduced form utility function, u : � −→ R+, is given by

u(x, x ′) = min{x, 1−a(x ′ − (1 − d)x)}.
In Fig. 1, the indifference curves of the reduced form utility function u(·, ·)
are the kinked lines OV L, 1MD and the two others shown in between. The
first is the minimum, zero-felicity curve, and the second, the maximum, unit-
felicity curve, the levels of felicity increasing as the curves move southeast.
What is important and well-understood is that the linearity of the felicity
function does not imply the linearity of the reduced-form felicity function
u(·, ·). The reduced-form model is now completely determined by the three
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parameters (a, d, ρ). The locus of all the kinks of the indifference curves is
furnished by the important, and aforementioned, MV line. We remind the
reader that these kinks also represent full employment of labor and capital
(existing stock of machines), and that therefore we obtain

x = 1 − a(x ′ − (1 − d)x) ⇐⇒ x ′ = (1/a) − [(1/a) − (1 − d)]x
⇐⇒ x ′ = (1/a) − ξx,

where ξ > −1 is the slope of the MV line representing the marginal rate
of transformation of today’s stock of machines into tomorrow’s stock, given
zero consumption levels, and the “sufficient statistic” for the 2-sector RSS
model.14

An economy E consists of a triple (�, u, ρ), 0 < ρ ≤ 1 the discount
factor, and the following concepts apply to it. A program from xo is a
sequence {x(t)} such that x(0) = xo, and for all t ∈ N, (x(t), x(t +1)) ∈ �.
A program {x(t)} is simply a program from x(0). A program {x(t)} is called
stationary if for all t ∈ N, (x(t)) = (x(t + 1)). For all 0 < ρ < 1, a program
{x∗(t), y∗(t)} from xo is said to be optimal if

∞∑

t=0

ρt [u(x(t), x(t + 1)) − u(x∗(t), x∗(t + 1))] ≤ 0

for every program {x(t)} from xo. A stationary optimal program is a program
that is stationary and optimal.

We now recall the basic observation in [5] that the modified golden-rule
stock is given by the point G, and that it yields the highest utility among all
plans in � which lie “above” a line with slope (1/ρ), and passing through G.
As is by now well-understood, the modified golden-rule stock x̂ solves the
following problem:

u(x̂, x̂) ≥ u(x, x ′) for all (x, x ′) ∈ � such that x ≤ (1 − ρ)x̂ + ρx ′.

Since u(x̂, x̂) > u(0, 0), x̂ satisfies precisely the definition of the discounted
golden-rule stock as in McKenzie [11] and his references.15 When ρ is unity,
this line collapses into the 45◦-line, and the analysis in [5] reduces to that
in the undiscounted case studied in [8]. More formally, it is the unique plan
that satisfies u(x̂, x̂) ≥ u(x, x ′) for all (x, x ′) ∈ � such that x ≤ x ′. The
distinguishing characteristic of the 2-sector RSS model, already established
in [5], is that the golden-rule stock is invariant to changes in the discount
factor.

14 See Footnotes 3 and 6 above, and the economic interpretation of ξ in [5, 8].
15 See the line RG in [5, Fig. 1].
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In summary, the geometric representation of the economy is given as in
Fig. 1, by the lines V L and OD, where OV is given by the output–input
coefficient (1/a) > 0 in the investment-goods sector, and the slopes of the
two lines being given by the depreciation rate (1 − d), d ∈ (0, 1). One
can now mark out the point M with coordinates (1, (1 − d)), the point V

with coordinates (0, 1/a), and finally the intersection of the MV line with
the 45◦-line to yield the modified golden-rule stock represented by the point
G = (x̂, x̂) = (1/(1 + ad), 1/(1 + ad)).

All this is routine transposition of the geometry for the undiscounted case
developed in [8] to the discounted case, and draws on the important fact
that the modified golden-rule stock G is independent of the discount fac-
tor ρ. What is new to [5] is the emphasis on two squares (OV V ′′V ′ and
M1M2M3M4 in Figs. 1, 7 and 8), and on the line GV ′ interpreted as dual
to the line MV . It is the intersection of GV ′ with OD that yields the point
C, the capital stock x̃ generating a 2-period cycle. In this context, it ought
to be borne in mind that this intersection is the unique 2-period cycle, an
observation stemming from the fact that a 2-period cycle is necessarily (and
sufficiently) given by a square with a vertex on the OD line, and with a side
given by the length of this point to the 45◦-line; see Fig. 3.16

A complete analysis of the cases ξ = 1 and ξ(1 − d) = 1 was pre-
sented in [5]. The essential geometric observation in [5] relates to the trap-
ping square M1M2M3M4: for any point on the left diagonal below the center
of the square, such as G in Figs. 2 and 3, consider the lines GM4 and GM2.
They are dual in the specific sense that their slopes are commensurable i.e.
the slope of one is reciprocal to that of the other. This leads to the property
that any point in the diagonal segment GM1 has the property that it is a vertex
of a square with its sides parallel to M1M2 and M1M4. In Fig. 3, the points
m2, m3, m4, m5, m6, and indeed the point M1 itself, can all be seen as such
vertices with their corresponding vertices on GM4 being n2, n3, n4, n5 and
M4 respectively.

This has a substantive consequence, already noted in [5] but being fully
exploited in this paper, that any plan chosen on the segment MG1 of the line
OD, say m1 in Fig. 3, by virtue of the square with the left lower vertex m4,
results in a capital stock determined by the plan n4 on GM4, (labeled as
n42 on the line MD′); and furthermore, by completing the square with right
lower vertex n2 and side (m2, n2), results in the plan m. Thus the arbitrary
plan m1 gives rise to the three plans m,n4 and n2. As further illustration, the
plan M results in a capital stock determined by D′, and the plan m results
in the capital stocks determined by the pair (m2,m1) the latter determined
via n2. The particular specification ξ(1 − d) = 1 (in Fig. 1) results in the

16 We owe this observation to David Wiczer.
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slope of the OD line being identical to that of the GV ′ line, resulting in
the plans M7 and D′ being identical, and more relevantly to the point being
currently emphasized, the sighting of the paired plans (M1,M4) as being dual
plans; see [5, Sect. 6.5]. If Fig. 3 is redrawn with the particular specification
of Fig. 1, the line OD is rotated upward so as to make D′ identical to M7,
enabling the plans m and n4 being on the same vertical, and the quadruple
(m, n2,m1, n4) constituting a rectangle and being reduced to the pair (m,m1)

being regarded as dual plans. This duality, in turn, lead to the establishment
of a continuum of 4-period cycles in [5].

In the argument recapitulated above, there is of course no presumption
that the check-map is an optimal map. That this is indeed so for values of
the discount factor ρ < (1/ξ) was one of principal contributions of [5]
for the two parametric instances considered therein. The essential idea of
the proof is to relate the ratio of value-losses at two different plans to being
identical to the ratio of their projections by the corresponding value-loss lines
onto a particular horizontal. Thus, in Fig. 3, the ratio of value-losses at (say)
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the plans at m1 and m11 is given by the ratio Gm11/Gm12.17 This allows
one to completely determine the optimal policy correspondence for all values
of the discount factor ρ in the two cases ξ = 1 and ξ(1 − d) = 1. As
mentioned above, in either case, the policy correspondence is the pan-map
for all ρ greater than 1/ξ , including unity, the check-map for all ρ less than
1/ξ , and a correspondence that includes these maps along with the triangle
�GMG1; see [5, Figs. 5 and 8]. However, as we shall see in the sequel,
this argument relies crucially on their being a continuum of cycles, 2- or 4-
period ones in the two respective cases. For the cases under consideration
here, we cannot rely on this consideration and a complete characterization
thereby remains elusive.

We now turn from this background analysis to move it forward to this
paper.

3. The Case 1 < ξ < (1/(1 − d))

This range of parametrization lies between the two polar ones considered in
[5], both of which fall within the category of the inside case, and it is thus
natural to ask for an analysis that we provide in this section.

3.1. The Benchmarks

The benchmark that characterizes the case under consideration is simply the
fact that the slope of the MD line in Fig. 3 (also MD′ line in Figs. 4–6) is
smaller than that of the GM4 line in absolute value. This can be alternatively
expressed as the fact that the point D′ lies below M5 (and M7), or to get yet
another perspective, that the capital stock determined by the plan n4 in Fig. 3
lies to the right of that determined by the plan m, both corresponding to the
arbitrarily-chosen plan m1.

In terms of previous work, in the case ξ = 1, the lines GM2 and GM4 in
Fig. 3 are collinear, and in the case ξ(1−d) = 1, perpendicular. Staying with
the latter case, the lines MD′ and GM4 in Fig. 1 have equal slopes (in
absolute value), and that the analogue of plan n4 in Fig. 3 lies on the vertical
through m.

3.2. Check-Map Dynamics

It is precisely the exploitation of this benchmark that leads to a complete
characterization of the case under consideration. Towards this end, consider

17 For a detailed discussion of this ratio of value-losses, see Sects. 4 and 6 in [5,
Sects. 4, 6].
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Fig. 4 which is focussed on the figure MM8M6M4, a subset of the square
M1M2M3M4, a third step in progressive magnification. It is now easy to see
that any plan on the segment MD′, say α0, by completion of the square, leads
to the plan α1 and thence to the plans α2, α3, · · · , eventually converging to
the capital stock x̃, and hence to the unique 2-period cycle. Just as the slope
of the MV line relative to the 45◦-line led to the initial opening into the
transitional dynamics of the 2-sector RSS model,18 it is the slope of the dual
MV line relative to the OD line that leads to the opening into the transitional
dynamics of the 2-sector RSS model in the case ξ greater than unity. Indeed,

18 This is the observation that established the viability of the geometric engine in [8].
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we also indicate in Fig. 4 a situation in which the OD line is given by MM6,
with the corresponding non-attracting 2-period cycle given by xc. For a proof
that any plan, near and unequal to xc, moves away from xc, simply follow
the plans β0, β1, β2, β3, · · · . In summary, the fact that the OD line has
a smaller slope than the dual of the MV line, is a necessary and sufficient
condition for the occurrence of an attracting 2-period cycle.19

3.3. The McKenzie Bifurcation

We have yet to establish values of the discount factor ρ for which the check
map constitutes the optimal policy function. Before turning to this, it is im-
portant to be clear why the geometric methods for delineating the optimal
policy correspondence developed in [5, 8] do not automatically extend to
this case. The point is simply that in the two cases considered in [5], the
argument relies crucially on the fact that any plan on the arms M2M and
MG1 lead to a 2-period cycle (in the case ξ = 1), or to a 4-period cycle
(in the case ξ(1 − d) = 1); see Fig. 1. As such we can compute the value-
loss of a path starting from it, and compare its value with the straight-down-
the-turnpike path given by the initial plan on the arm GG1 of the pan-map.
Given pervasive convexity (indeed, linearity of the model), the discount factor
which brings about the equality of this comparison is enough to pin down the
optimal policy function. It is the absence of this feature that requires a sub-
stantial extension of the argument.

19 See Footnote 16 and the text it footnotes.
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In the case under consideration, such a comparison can be made for a pro-
gram starting at C in Fig. 5. We shall refer to programs that converge to the
golden-rule stock G in one period as straight-down-the-turnpike programs,
and the point is to compare a straight-down-the-turnpike path with one that
cycles every two periods. To recall the argument made in [5], we need to
work with

δρ(x̃, x̂) = δρ(x̃, (1 − d)x̃)(1 + ρ2 + ρ4 + · · · ) = δρ(x̃, (1 − d)x̃)(1/(1 − ρ2)),

(1)

where δρ(x, x ′) is a single-period value loss of a plan with coordinates
(x, x ′), and where x̃ is the initial stock at the plan C. And now by the result
on the ratio of value-losses mentioned earlier,20 we obtain that

ρ2 = δρ(x̃, x̂) − δρ(x̃, (1 − d)x̃)

δρ(x̃, x̂)
= c11c12

Gc11
= c11c12

c11C

c11C

Gc11
= 1

ξ2 . (2)

Now, just as in [5], the reader can check, that for ρ > (1/ξ), the plan c11 is
optimal, while for ρ < (1/ξ), the plan C is optimal. This completes the the
first step of the argument.

However, such a clear-cut comparison is no longer possible programs
with initial stocks other than C. The reason is the obvious one that con-
vergence to the plan C from such stocks takes an infinite number of time-
periods and hence an evaluation of an infinite series of discounted value-
losses. Figure 6 illustrates the issue. We need to show that the discount factor
(1/ξ) equates the value-loss of the straight-down-the-turnpike path to the ac-
cumulated value-losses of a path that converges to the plan C, which is to say,
the path constituted by the plans m0,m1,m2, · · · . From a geometrical point
of view, the analogue of Eq. (1) and of Eq. (2) would be one that equates the
segment Gm01 to the weighted sum of the segments Gm02,Gm12, · · · , the
weights respectively being 1, 1/ξ2, 1/ξ4, · · · . The required procedure then
consists of the following steps illustrated in Fig. 6. Obtain the line GR1 of
slope tan−1(1/ξ2) from the line GR of slope tan−1(1/ξ) by completing the
rectangle at G through the use of the 45◦-line. Next, draw a line at m12 par-
allel to GR1 with its intersection with the vertical at indicated by the point
π1. Third, obtain, again through the 45◦-line at m02 the point q1 where m02q1
equals Gπ1. The second term Gm12/ξ

2 in the weighted sum of value-losses
is precisely m02q1. But now the succeeding iterative steps of the argument
are clear. We obtain the line GR2 of slope tan−1(1/ξ4) from the line GR1
of slope tan−1(1/ξ2) precisely by a completion of the relevant rectangle as
before, and by shifting it to the plan m22, to obtain the point π2, and finally

20 See the last but one paragraph of Sect. 2 above, and Footnote 17 for a precise
reference to [5].



Further geometric investigation 55

the point q2 through a 45◦-line at q1. The reader can see that the segments
Gπi converge to zero. What is being claimed, and has to be shown through
analysis, is that this point is precisely the point m01. This overview of the un-
derlying argument involves a second order non-autonomous linear difference
equation.21 The point is that even though Fig. 6 illustrates the structure of the
argument, it cannot clinch it, and thereby brings out the apparent inadequacy
of the geometric approach. Whenever the summation of an infinite number
of sums is required, geometry is naturally required to defer to analysis.

However, this difficulty can be bypassed! We make the plan C, instead
of the plan M , the lynch-pin of the argument. What is primarily at issue is
that the OD line intersects the square at a point D′ below M5 (see Figs. 3–6),
and that it is a specific instance of an inside case illustrated in Fig. 2c. It is
this that allows the feasibility of a program that begins at M , and converges
to the golden-rule stock in the third period, an observation that can be ex-
ploited to give a complete geometric characterization of the optimal policy
red correspondence in the case under consideration. In terms of an overview,
we proceed in three steps: in the context of Fig. 3, and at the discount factor
(1/ξ), we show that (a) specified feasible programs starting from the plans m1
and m11 have identical values losses, (b) specified feasible programs starting
from plans on the arm MC have identical value losses, (c) use the optimal-
ity of the plan C to establish that this common value-losses are indeed the
optimal value-losses.

Towards this end, consider the plan represented by the point m1 in Fig. 3.
Certainly the program that begins at the point m11 and stays at the golden-
rule stock thereafter is feasible, as is the program that begins with the plan m1,
continues on through m4 to n41, and stays at the golden-rule stock thereafter.
We can now determine the value of the discount factor ρ that equates the
aggregate value losses of these two paths. This is to say that we want the root
to the equation

δρ(xm, x̂) = δρ(xm, (1 − d)xm) + ρ2δρ(xn, x̂)

=⇒ ρ2 = δρ(xm, x̂) − δρ(xm, (1 − d)xm)

δρ(xn, x̂)
,

where xm and xn are the respective initial stocks at the plans m1 and n41. And
now by the result on the ratio of value-losses mentioned earlier,22 we obtain

δρ(xm, x̂) − δρ(xm, (1 − d)xm)

δρ(xn, x̂)
= Gm11 − Gm12

Gn41
= m11m12

Gn41
.

21 A full analysis of this equation will be presented elsewhere.
22 See Footnotes 17 and 20, and the text they footnote.
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Next, by focussing on �Gn41n4 and �m12m11m1, the triangles in bold in
Fig. 3, we obtain

m12m11

m1m11
= 1

ξ
,

Gn41

n4n41
= ξ.

Since the segment n4n41 equals m1m11, we can eliminate it to obtain that ρ =
1/ξ . Again, by appealing to the pervasive convexity of the model, any plan
in the segment m1m11 would be part of an optimal program at the discount
factor (1/ξ) if either of the initial two plans were optimal. Furthermore, this
argument carries over verbatim to any initial plan in the segment n3G1.

Next, we turn to initial plans in the segment Mn3, say the plan m in
Fig. 3, or the plan m1 in Fig. 5. Again, on equating the value-losses from
the straight-down-the-turnpike program to those obtained by shutting down
the investment sector in the first period, and then going straight-down-the-
turnpike once enough capital has been accumulated, we can determine the
relevant discount factor. Even though the triangles at issue seem different
in Fig. 5, it can be easily checked that the argument presented above in
the context of Fig. 3 carries over verbatim to Fig. 5 when we substitute m1
and m11 for n4 and n41. None of the formulae presented above require any
modification.

The point is that the argument is of course not yet complete. Except
for the plan C in Fig. 3 (and in Figs. 5 and 6), who is to say that the two
straight-down-the-turnpike paths, one a truncation after two periods, are not
both non-optimal? We now proceed to rule this non-optimality out. In Fig. 5,
consider a program that begins at the point m01 and stays at the golden-rule
stock thereafter, and a program that begins with the plan m0, continues on
through the MV line, and becomes the 2-period cycle at the point C. We can
now determine the value of the discount factor ρ that equates the aggregate
value losses of these two paths. This is to say that we want the root to the
equation

δρ(xm, x̂) = δρ(xm, x ′
m) + ρ2

1 − ρ2 δρ(x̃, (1 − d)x̃) =⇒ ρ2

= δρ(xm, x̂) − δρ(xm, x ′
m)

δρ(x̃, (1 − d)x̃) + δρ(xm, x̂) − δρ(xm, x ′
m)

,

where (xm, x ′
m) is the coordinate of the plan m0. Since �m0m01m02 �

�Cc11c12, we obtain

ρ2 = m01m02

Gc12 + m01m02
= m01m02

Gc11
= m01m02

Cc11

Cc11

Gc11
= 1

ξ2 .

But this allows an almost effortless completion of the argument.
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To recapitulate the argument for the reader, we have shown that at the
discount factor (1/ξ), the plan m0 is optimal, and that its aggregate value
loss is identical to the program that begins at m01 and stays at the golden-
rule stock thereafter, and hence the latter program is optimal. But again, this
aggregate value-loss is identical to the program that begins at M , and passes
through the plan M5 to stay at the golden-rule stock thereafter, and hence
this program too is optimal. Hence we have shown that any plan in the entire
triangle MGG1 (in Fig. 3) is an optimal plan. The only point that remains
is the delineation optimal policy functions when the discount factor is not
(1/ξ). For ρ > (1/ξ), we proceed just as in [5] and establish the pan-map
as the optimal policy function. The case ρ < (1/ξ) requires some additional
work.

Towards this end, in Fig. 3, consider any plan in the segment CD′, say
m1. It is clear that for any discount factor less than (1/ξ), any plan on the
vertical mm11 other than m1 yields greater value-loss than m1. The issue
concerns subsequent plans, which is to say, the aggregate value loss of the
entire program. But we can now appeal to the distinguishing characteristic
of the case under consideration (the relative magnitudes of the slopes of the
lines MD′ and GM4); and the general result that the value function is non-
decreasing in the initial capital stock (see [4, Sect. 4, Paragraph 1]), and that
therefore its dual, the aggregate value-loss, is non-increasing in the initial
capital stock. This allows us to establish that the aggregate value loss of any
program starting from a plan on mm11 other than m1 is less than the value
loss of a program that keeps to the arm MD′ and the corresponding interval
of the arm GM . Such a program will of course converge to the plan C, but
this limiting fact is not utilized in the argument.

3.4. The Optimal Policy Correspondence

In the case ξ(1−d) ≤ 1, as portrayed in Fig. 2, the optimal policy correspon-
dence is given by the pan-map V GG1D for all ρ > 1/ξ , by the check-map
V MD for all ρ < 1/ξ , and by the pan-check correspondence for all ρ = 1/ξ .

4. The Case (ξ − (1/ξ))(1 − d) = 1

This case was used as the basis for the result in [4] that optimal programs
in the 2-sector RSS model can be chaotic for “small” discount factors. The
interest in this case, exhibited in Fig. 7, lies in the fact that, starting from a
unit capital stock, optimal programs for “small” discount factors converge to
the golden-rule stock in three periods.
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Fig. 7 The geometry of the case aξ3 = (ξ2 − 1) or (ξ − (1/ξ))(1 − d) = 1

4.1. The Benchmarks

The benchmark that characterizes the case under consideration is the fact any
program starting from the plan M converges in three periods, via the plans M2
and G1 to G; see Fig. 7. As discussed in [4], this algebraically translates to

(1 − d)(
1

a
− ξ(1 − d)) = x̂.

We furnish a more transparent characterization of this condition.
Towards this end, let MM1 = x. Then M1M2 = M2M3 = ξx and

MM4 = (ξ − 1)x. Now let G1M4 = y. Then GJ = y/ξ and MM1 =
(y + y/ξ) = y(1 + ξ)/ξ = x which implies y = xξ/(1 + ξ). But this yields

(1 − d) = G1M4

MM4
= y

(ξ − 1)x
= xξ

(ξ − 1)(1 + ξ)x
= ξ

ξ2 − 1
.
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By taking the definition of ξ = (1/a) − (1 − d) into account, we can rewrite
this as
(

ξ − 1

ξ

)
(1−d) = 1 ⇐⇒

(
ξ − 1

ξ

) (
1

a
− ξ

)
= 1 ⇐⇒ a = ξ3

ξ2 − 1
. (3)

A question of interest is whether (3) expresses itself in some sort of per-
pendicularity. To see this, consider in Fig. 7 the line MV1 parallel to the line
GV ′ and let the horizontal through V1 intersect the vertical through M at M ′.
Then the line V M ′ is perpendicular to the line OD. Note that the tangent
of the angle ∠V1M

′V is given by V V1/V1M
′ which equals V V2 − V1V2

which equals ξ − (1/ξ). The perpendicularity follows from the fact that
the angles ∠V1M

′V and ∠V1V M ′ are complementary angles. Since ∠V OD

and ∠DOV ′ are also complementary angles, and (3) yields the equality of
∠V OD and ∠V1M

′V , the angles ∠V OD and ∠M ′V O are also comple-
mentary angles. The argument for the perpendicularity of V M ′ and OD is
complete.

4.2. Check-Map Dynamics

We can now use the benchmarks identified above to highlight some of the
properties of the dynamics that stem from the check-map in this particular
case.

As in the case considered previously, the intersection of the OD and the
dual MV lines yield a 2-period cycle. However, it is easy to see that it is
unstable. From the characterization in (3), we obtain

(1 − d) − 1

ξ
= ξ

ξ2 − 1
− 1

ξ
= 1

ξ(ξ2 − 1)
> 0.

In terms of a geometric argument based on Fig. 7, this follows from the
fact that

(1 − d) = G1M4

MM4
>

G1M4

GG1
= tan (∠GM4M) = tan (∠M4V

′O) = 1/ξ.

Next, we turn to 3-period cycles. The check-map has two arms, and it
easy to see that the only possibility of a 3-period cycle of the order RRL,
rather than LLR or RLR, where R refers to a plan on the right arm and L on
the left. This implies, for an initial stock x,

x → x(1 − d) → x(1 − d)2 → 1

a
− ξ(1 − d)2x → x =⇒ 1

a
− ξ(1 − d)2x

= x =⇒ (1 − d)2x = 1

aξ
− x

ξ
.
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But this is nothing other than the requirement that the dual MV line intersect
the line N3 in the trapping square; see Fig. 7. And since we have already
seen in Fig. 6 how to obtain a line of slope x2 from a line of slope x, we can
now turn to showing the impossibility of 3-period cycles in the case under
consideration.

Towards this end, let the downward vertical from M1 intersect the line
OD at N1 and the horizontal intersect the downward vertical from M at N

and from M1 at N4. Let the line ON intersect the downward vertical from
M4 at N3. It is easy to check that the slope of the line ON3 is tan−1(1 − d)2.
We shall now show that N3 is always below the vertex M4. Note from Fig. 7
that

NN4 = MM4 = M4G1

(1 − d)
= x̂ − (1 − d)

(1 − d)
⇐⇒ N3N4 = x̂(1−d)−(1−d)2.

Since
M4N4 = M1N1 = (1 − d)MM1 = d(1 − d),

we obtain

M4N4 − N3N4 = M1N1 − N3N4

= d(1 − d) + (1 − d)2 − x̂(1 − d)

= (1 − d)(d + 1 − d − x̂) = (1 − d)(1 − x̂) > 0.

The argument is complete.

4.3. The McKenzie Bifurcation

As in Sect. 3, we have yet to establish values of the discount factor ρ for
which the check map constitutes the optimal policy function. We now turn
to this.

We begin with the case where the initial capital stock is x̃. The argument
revolving around Eq. (2) applies with the relevant part of Fig. 7 magnified
along the lines of Figs. 5 and 6 concerning the previous case. We conclude
that with ρ = ρ̂ = (1/ξ), the planner is indifferent between a two-period
cyclical path and one in which the cycles are terminated at any time by his
moving to the golden-rule stock and staying there.

Next, we turn to the case where the initial capital stock is unity. Again,
consider two alternative paths: the first where the planner moves to the
golden-rule stock and stays there (the straight-down-the-turnpike path); and
the second, the path that returns to the initial capital stock after three periods.
In Fig. 7, simply observe that by virtue of the similarity of the triangles,
�GJM and �GG1M1,
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δρ(1, x̂) = ρ2δρ(x̂1, x̂) =⇒ρ2 = δρ(1, x̂)

δρ(x̂1, x̂)
= GJ

G1G
= GJ

JM

G1M4

G1G
= 1/ξ2.

(4)
But now the argument follows along familiar lines.

At this point, the alert reader will question the argument for the cases
when the discount factor is not equal to (1/ξ). The fact that earlier arguments
carry over verbatim to the case when ρ > (1/ξ) is clear; the issue concerns
the situation when ρ < (1/ξ). The argument that needs to be adapted is
the one furnished in the concluding paragraph of Sect. 3.3, one that relied
crucially on the fact that the check-map ensures convergence to a 2-period
cycle. The distinguishing characteristic of the current case is that no such
convergence obtains, and indeed, as established in [4], the trajectories are
topologically chaotic. And so one does not have recourse to an argument,
especially a geometric one, that shows that the check-map to be the optimal
policy function for all ρ < (1/ξ). Indeed, the claim itself may be false, and
we are obliged to leave it as an open question.

4.4. The Optimal Policy Correspondence

In the case (ξ − (1/ξ))(1 − d) = 1, as portrayed in Fig. 7, the optimal policy
correspondence is given by the pan-map V GG1D for all ρ > 1/ξ and by the
pan-check correspondence for all ρ = 1/ξ .

5. The Case (ξ − 1)(1 − d) = 1

The interest in this case, a case original to this paper and whose geometry
is exhibited in Fig. 8, lies in the fact that, starting from a unit capital stock,
optimal programs for “small” discount factors exhibit three-period cycles.

5.1. The Benchmarks

The benchmark that characterizes the case under consideration is the fact any
program starting from the plan M returns to it in three periods, via the plans
M2 and M6; see Fig. 8.

A distinguishing geometric characteristic of this case is that the perpen-
dicular to OD at M , and intersecting the Y -axis at W , leads to the segment
V W being of unit length. Since ∠MOW is complementary to both ∠OWM

and ∠DOV ′, the latter are equal. This implies that WMd is 1/(1 − d) which
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(1/a) − 1 = (1 − d) + (1 − d)−1

implies, given the distinguishing characteristic of the case under considera-
tion, that it equals23 (ξ − 1). Since OV is 1/a, we obtain

V W=OV −OMd−WMd = 1

a
− 1

1 − d
+(1−d) = 1

a
−(ξ−1)−(1−d) = 1.

Next, we let OM intersect the square M1M2M3M4 again at M6, and let
the vertical from M intersect the 45◦-line at M11. We join M11 to M4, and
designate its intersection with the X-axis by W ′. Join M11 to M6. We have
to show that M11M6 is a horizontal, or equivalently, that MM4M6M11 is

23 Recall that ξ is a positive number greater than 1.
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a rectangle. But this is a straightforward deduction. Since �M3M2M11 �
�M3M4M11, M2M11 = M11M4, which is to say that �M2M10M11G �
�MM11M4, and hence M10M11 = M11M , and hence MM11M10M1 is a
square. Hence M4M6M11M is a rectangle.

We may note some additional benchmarks in passing. Since MM6
and M4M11 are diagonals of the rectangle MM4M6M11, ∠M6MM4 =
∠M11M4M . Furthermore, since ∠OWM is complementary to ∠WOM ,
which is itself complementary to ∠MOV ′, it is equal to ∠MOV ′ which
is equal to ∠M6MM4, and hence equal to ∠M11M4M , and therefore to
∠M4W

′O . All this establishes that both ∠MdWM and ∠M4W
′O equal

tan−1(1 − d). This means that �WMMd � �1M11W
′ which in turn implies

that W ′V ′ = (1 − d). It also means that x3W
′ is of unit length, and hence

M4x3 = (1 − d).
We can use these deductions to obtain

tan(∠M4OV ′) = M4x3

Ox3
= 1 − d

ξ − 1
= (1 − d)2.

Thus the points O,L and M4 are collinear, where N1 is the intersection of
OD and the vertical from M1 and N is the intersection of the vertical from
M and the horizontal from N1.

In summary, the geometry of this case furnishes an important perspec-
tive on the geometric apparatus presented in the sections above. In the case
depicted in Fig. 1, it is the symmetric trapezium reflecting MM4G1G that re-
flects the perpendicularity of the V M and OD lines; while in Fig. 7, it is the
triangle V1MM ′ and the perpendicularity of the V M ′ and OD lines. In the
case at hand in this section, in Fig. 8, it is the rectangle MM4M6M11, the per-
pendicularity of the WM and OD lines, and the congruence of the triangles
WMMd and 1M11W

′.

5.2. Check-Map Dynamics

We can now use the benchmarks identified above to highlight some of the
properties of the dynamics that stem from the check-map.

As in the case considered previously, the intersection of the OD and the
dual MV lines yield a 2-period cycle. However, it is easy to see that it is
unstable. Since MM4M6M11 is a rectangle with each of its diagonals with
slope (1 − d), we obtain

(1/ξ) = tan(∠GM4M) < tan(∠M11M4M) = (1 − d) =⇒ ξ(1 − d) > 1,

a demonstration of the instability claim as a consequence of the argumenta-
tion already appealed to above.
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tan-1(1-d) = tan-1(1/(ξ−1))

M4

G

tan-1(1/ξ)tan-1ξ

M7

45° line

M5

xM ~

n

g01g02m02

m01

tan-1(1-d)

m62

G0

C

c11c12

M10

M0

M11

G1

V D

G00

M8

M9

D�=M6

Fig. 9 Determination of ρ1 and ρc in the case (ξ − 1)(1 − d) = 1

Next, we turn to 3-period cycles. There are two alternative ways to
demonstrate that there is a three-period cycle from M . For the first, simply
appeal to the fact that MM11M6M4 is a rectangle to directly obtain the result.
For a second demonstration, appeal to the fact that the OD2 line with slope
(1 − d)2 intersects the trapping square M1M2M3M4 at M4, and appeal to the
argument made in the third paragraph of Sect. 4.2 above.

What is of particular interest is the fact this 3-period cycle is also unstable.
The demonstration of this claim follows the line of argument that hinges on
the dual MV line developed in Sect. 3. Towards this end, consider in Fig. 9
an initial capital stock in the vicinity of M6, say x units to the left of the
abscissa of M6, where x is “small.” The dynamics of the check-map demand
that this will lead to a choice of a plan on the MV line in the interval MG00,
and thence through the dual MV line on a plan on the OD line with abscissa
ξ2(1 − d)x. Since the defining characteristic of the case under consideration
leads to this magnitude being ξ2/(ξ − 1), and hence to (ξ + (ξ/(ξ − 1)), it is
clear that we end up with a plan further away from M6 from where we began.

This argument is premised on a beginning at the left of M6. However, any
plan that begins in a “ small” vicinity to the right of M6, will fall to the left of
M6 after two periods. In passing, we leave it to the interested reader to show
that the plan G1 is also locally unstable.
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5.3. Two Bifurcations

As in Sects. 3 and 4, we have yet to establish values of the discount factor
ρ for which the check map constitutes the optimal policy function. We now
turn to this.

Consider, as above, the case where the initial capital stock is x̃, and appeal
to the argument offered therein that with ρ = ρ̂ = (1/ξ), the planner is
indifferent between a two-period cyclical path and one in which the cycles
are terminated at any time by his moving to the golden-rule stock and staying
there; see Figs. 8 and 9.

Next, turn to the case where the initial capital stock is unity. Again, con-
sider two alternative paths: the first where the planner moves to the golden-
rule stock and stays there (the straight-down-the-turnpike path); and the sec-
ond, the path that returns to the initial capital stock after three periods. In
terms of Figs. 8, the path that moves from J to G (m01 to G in Fig. 9) com-
pared to the path MM2M6M . We now determine the value of the discount
factor ρ that equates the aggregate value losses of these two paths. This is to
say that we want the root to the equation

δρ(1, x̂) = δρ(x̄, (1 − d)x̄)(ρ2 + ρ5 + · · · )
=⇒ δρ(1, x̂)

δρ(x̄, (1 − d)x̄)
= ρ2

1 − ρ3
(5)

Now, again by Eq. (5), and with reference to Fig. 9, we obtain

δρ(1, x̂)

δρ(x̄, (1 − d)x̄)
= Gm01

Gm62
= Gm01

M8M6
= Gm01

M8M11 + M11M6
.

Next, by focussing on triangles �MM11M8 and �MM11M6, we obtain

M8M11

MM11
= 1

ξ
,

MM11

M11M6
= 1 − d and

Gm01

MM11 − Gm01
= 1

ξ
=⇒ Gm01

MM11
= 1

1 + ξ
.

On making the appropriate substitutions, and on eliminating MM11, we
obtain

Gm01

M8M11 + M11M6
=

MM11
1+ξ

MM11
ξ

+ MM11
1−d

= ξ(1 − d)

(1 + ξ)(ξ + (1 − d))

= ξ

(1 + ξ)(1 − ξ + ξ2)
≡ τ.
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We thus obtain

ρ2

1 − ρ3 = τ =⇒ f (ρ) = ρ3 + (1/τ)ρ2 − 1 = 0.

Thus the root ρc of Eq. (5) is now seen to be one that leads to the solution of
the equation f (ρ) = 0.

It is easily checked that f (·) is a monotonically increasing continuous
function that takes the value −1 at ρ = 0, and the value (1/τ) at ρ = 1. Thus
it has a unique root ρc. The interesting question is how this root relates to ρ̂.
But this can be easily checked as follows:

f (ρ̂) = f (
1

ξ
) = 1

ξ3 + (1 + ξ)(1 − ξ + ξ2)

ξ3 − 1 = 2

ξ3 > 0.

Hence ρ̂ > ρc.
Now consider another path alternative to the straight-down-the-turnpike

path; namely, the path that does not return to the initial capital stock after
three periods but one that moves to the golden-rule stock in the third period.
In terms of Fig. 9, the path that moves from m01to G, compared to the path
MM2M6m01. We now determine the value of the discount factor ρ̄ that
equates the aggregate value losses of these two paths. This is to say that we
want the root to the equation

δρ(1, x̂) = ρ2δρ(x̄, (1 − d)x̄) + ρ3δρ(1, x̂)

=⇒ δρ(1, x̂)

δρ(x̄, (1 − d)x̄)
= ρ2

1 − ρ3 = τ (6)

which is identical to Eq. (5).
But now we can consider another alternative to the straight-down-the-

turnpike path; namely, the path that moves to the golden-rule stock in the
(3n)th-period after cycling n times, where n ∈ N. Let the value of the
discount factor that equates the aggregate value losses of these two paths
be indicated simply by ρ. This is the root to the equation

δρ(1, x̂) = ρ2δρ(x̄, (1 − d)x̄)(1 + ρ3 + · · · + ρ(3n−1)) + ρ3nδρ(1, x̂)

= ρ2(1 − ρ3n)

1 − ρ3
δρ(x̄, (1 − d)x̄) + ρ3nδρ(1, x̂).
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This implies
δρ(1, x̂)

δρ(x̄, (1 − d)x̄)
= ρ2

1 − ρ3 ,

which is again identical to Eq. (5). Hence ρ = ρc for all n ∈ N.
In Fig. 9, let M10 be the intersection of M4G with MM11. Since M10 is on

M4G, a path starting from M10 returns to M10 in two periods. Now compare
the straight-down-the-turnpike path with the full-employment path starting at
M10 that moves to the golden-rule stock in the second period. The value of
the discount factor that equates the aggregate value losses of these two paths
is given by the root to the equation

Gm01 = Gm12 + ρ2Gm01 =⇒ Gm01

Gm12
= 1

1 − ρ2 , (7)

where m12 is the point of intersection, not shown in Fig. 9, of GG1 with a
line parallel to MM8 through M10. Now observe that

Gm01

Gm12
= Gm01

Gm01 − m12m01
=

(
1 − m12m01

Gm01

)−1

=
(

1 − (M10m01)/ξ

(M10m01)ξ

)−1

=
(

1 − 1

ξ2

)−1

.

We have shown that the root to the equation is (1/ξ).
Next, compare the straight-down-the-turnpike path with the full-

employment path that keeps oscillating between M10 and M8. The discount
factor is given by the root to the equation

Gm01 = Gm12(1 + ρ2 + · · · ) =⇒ Gm01

Gm12
= 1

1 − ρ2
, (8)

which is identical to the equation already considered above, and thus the
discount factor is unchanged at (1/ξ).

Finally, in this connection, compare the straight-down-the-turnpike path
with the full-employment path that keeps oscillating between Mi and M7 and
moves to the golden-rule stock in the (2n + 1)th-period, where n ∈ N. It is
of interest that the discount factor that equates the aggregate value losses of
these two paths is also (1/ξ). To see this, we need to consider the root to the
equation

Gm01 = Gm12(ρ
2 +· · ·+ρ2n)+ρ(2n+2)Gm01 =⇒ Gm01

Gm12
= 1

1 − ρ2 . (9)

Next, in Fig. 9, let G0 be the point of intersection of the horizontal from
the point n at which the vertical from G1 intersects GM4. Certainly, a path
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starting from G0 returns to G1 in two periods. We now compare this path with
the straight-down-the-turnpike path. The relevant discount factor is given by
the root of the following equation.

Gg01 = Gg02 + ρ2G1G =⇒ g02g01 = ρ2G1G

=⇒ ρ2 = g02g01

G1G
= (G0g01)/ξ

ξ(G0g01)
= 1

ξ2 . (10)

We have shown that the root to the equation is (1/ξ).
The interesting argument relates to the comparison of that begins at the

plan M0 in Figs. 8 and 9. Note that this allows the feasibility of a program
that makes a value-loss in the first period, and after a further value-loss at
G1, converges to the golden-rule stock. The question at issue is the discount
factor at which the aggregate value-losses of such a path, hereafter path S, is
equal to the path that starts at the unit capital stock and returns to it after three
periods. We shall furnish a geometric proof for the underlying polynomial.

Gm02 + ρ2GG1 = m62G(ρ2 + ρ5 + · · · ) = m62G
ρ2

1 − ρ3 . (11)

But this leads to

0 = Gm02 − ρ3Gm02 + ρ2GG1 − ρ5GG1 − ρ2Gm62

= −(ρ5GG1 + ρ3Gm02 + ρ2Gm62 − Gm02)

= −ρ5ξ2(ξ + (1 − d) + ρ3Gm02(1/ξ) + (ξ + (1 − d))ρ2 − (1/ξ)).

We thus obtain the fundamental polynomial for the second bifurcation to be

ξ2ρ5 + aρ3 + ξρ2 − a = 0.

We check by inspection that one of the roots of this polynomial is (1/ξ), and
therefore, by division, and the appropriate substitution of a by (ξ − 1)/(ξ2 −
ξ + 1), we obtain the quartic

ξ(ξ2 − ξ + 1)ρ4 − (ξ2 − ξ + 1)ρ3 + ξρ2 + ξ(ξ − 1)ρ − (ξ − 1) = 0.

On considering the specific case of ξ = 3 and therefore d = 1/2 and a =
2/7, we obtain the polynomial

21ρ4 − 7ρ3 + 3ρ2 + 6ρ − 2 = 0,

with a value of ρ̂1 to be 299/1018 = 0.29371322080902. If we at this discount
factor, we compute the value of consumption from the 3-period cycle, and the
path that begins at the plan r and ends up at the golden-rule stock after two
periods, we find it to be 1.26518108874487 in either case.
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Note that if we compare the value-losses from the path S to a path that be-
gins as the 3-period cycle from the unit capital stock, but instead of complet-
ing the cycle, is made to converge to the golden-rule stock, the corresponding
equation for the discount factor is given by

Gr12 + ρ2GG1 = ρ2m62G + ρ3Gr12 + ρ5GG1,

which is identical to Eq. (11).
So far so good. However, just as in the case considered in Sect. 4, the dif-

ficult issues arise for the situation when 0 < ρ < ρc. One would expect that
the optimal policy correspondence would be given by the check-map, but in
the absence of convergence, the geometric methods being presented in this
paper do not suffice, and we are obliged to leave the complete characteriza-
tion as an open problem.

5.4. The Optimal Policy Correspondence

In the case (ξ − 1)(1 − d) = 1, as portrayed in Figs. 8 and 9, the optimal
policy correspondence is given by the pan-map V GG1D for all ρ > 1/ξ ,
by the pan-map V G00G0D for all ρc < ρ < 1/ξ , and by the pan-pan corre-
spondence for all ρ = 1/ξ , and the pan-check correspondence for all ρ = ρc.

6. Concluding Observation

In this paper, we have provided a substantial geometric apparatus that goes
well beyond that presented in [5, 8]. Our progress from a substantive point
can be gauged by a quotation from the concluding remarks in [9]:

The bifurcation result naturally raises two related questions. First,
what kind of optimal behavior would one observe at the bifurcation
value of the discount factor ρ∗ = (1/ξ)? Second, what is the optimal
policy correspondence when ρ < (1/ξ)? It is possible that . . . the
analogy is complete with the discounted case. . . . However, a more
intricate picture is also possible.

In addition to providing intuitive geometric arguments, we have made sub-
stantial progress regarding this picture when ξ lies in the interval −1 < ξ <

1/(1 − d) and for two of its specific values. Whereas there is little further to
be said for the former, it is clear that a more detailed comparative analysis of
the two latter cases remains to be done. This would involve the delineation of
the optimal policy correspondence for the entire range of the discount factor,
as well as a better understanding of the role these cases play in the investi-
gation of exact parametric restrictions for the existence of chaotic programs.
We defer such an investigation to future work.
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